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V. Gavrilov,37 A. Gay,19 P. Gay,13 D. Gelé,19 R. Gelhaus,49 C.E. Gerber,52 Y. Gershtein,50 D. Gillberg,5
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We report a search for the standard model (SM) Higgs boson based on data collected by the
DØ experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of
260 pb−1. We study events with missing transverse energy and two acoplanar b-jets, which provide
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sensitivity to the ZH production cross section in the νν̄bb̄ channel and to WH production, when
the lepton from the W → ℓν decay is undetected. The data are consistent with the SM background
expectation, and we set 95% C.L. upper limits on σ(pp̄ → ZH/WH) × B(H → bb̄) from 3.4/8.3 to
2.5/6.3 pb, for Higgs masses between 105 and 135 GeV.

PACS numbers: 13.85.Qk, 13.85.Ni, 13.85.Rm

In the standard model (SM) the Higgs boson (H) is
responsible for electroweak symmetry breaking and has
not yet been observed. The experiments at the CERN
e+e− Collider (LEP) provide lower limits on its mass,
mH > 114.4 GeV, while electroweak global fits favor a
light Higgs boson, mH < 207 GeV at 95% C.L. [1]. If it
exists, the Higgs boson could be observed at the Fermilab
Tevatron Collider (center of mass energy

√
s =1.96 TeV)

by combining different analysis channels from both the
DØ and CDF experiments [2, 3].

We present a search for a SM Higgs boson with mH

between 105 and 135 GeV, in the final state with missing
transverse energy (6ET ) and two or three jets, in which
one or two jets are identified (“tagged”) as b jets. This
final state is sensitive to Higgs bosons produced in the
pp̄ → ZH → νν̄bb̄ channel, which is particularly promis-
ing because of the expected large Z → νν̄ and H → bb̄
branching fractions. The product of cross section (σ) and
branching fraction (B) is predicted to be about 0.01 pb
for a 115 GeV Higgs boson, which is comparable to that
for WH → lνbb̄ [4].

The chosen final state also has sensitivity to WH
production since the charged lepton from W decay can
be undetected or not identified properly (6ℓνbb̄ channel).
Searches for WH production have been performed pre-
viously by relying on the identification of the electron or
the muon from leptonic W decay [5, 6].

There are two main sources of background to this fi-
nal state: i) the ”physics” backgrounds Z+jets, W+jets,
electroweak diboson production (WZ and ZZ), and top
quark production with undetected leptons or jets, and
ii) a large instrumental background caused by multijet
events with mismeasured jet energies that is difficult to
simulate. In the ZH or WH processes, since the two
b jets are boosted along the Higgs-momentum direction,
they are not back-to-back in azimuthal angle (ϕ), in con-
trast to the dominant dijet background. Our search is
based on an integrated luminosity of 260 pb−1 accumu-
lated with a dedicated trigger designed to select events
with significant 6ET and with jets that are not back-to-
back.

The DØ tracking system, consists of a silicon mi-
crostrip tracker (SMT) and a central fiber tracker (CFT),
both located within a 2 T superconducting solenoidal
magnet [7], with tracking and vertexing at pseudora-
pidities |η| < 3 and |η| < 2.5, respectively, where
η = − ln (tan (θ/2)), and θ is the polar angle. A liquid-
argon and uranium calorimeter has a central section (CC)
covering |η| up to ≈ 1.1, and two end calorimeters (EC)

that extend coverage to |η| ≈ 4.2 [8]. An outer muon sys-
tem, at |η| < 2, consists of a layer of tracking detectors
and scintillation trigger counters in front of 1.8 T toroids,
followed by two similar layers after the toroids.

To estimate the number of expected events, the signal
(ZH, WH), tt̄, and diboson production is simulated with
pythia [9]. For W and Z events with two or more jets
we use alpgen [10], and for single top simulation we use
comphep [11]. The samples generated by comphep and
alpgen are passed through pythia for showering and
hadronization. The cross section for the alpgen samples
are normalized to next-to-leading-order calculations [12].
All the samples are processed through DØ detector simu-
lation based on geant [13], and DØ reconstruction soft-
ware. Trigger efficiencies measured in data are applied
to correct the simulated events.

Event selection requires two or three jets reconsructed
with the ”iterative-midpoint-Run-II” cone algorithm,
with pT > 20 GeV, |η| < 2.5 and a cone radius of
∆R =

√

(∆η)2 + (∆ϕ)2 < 0.5. Jets are required to
pass quality criteria designed to reject noise and suppress
electron- or photon-induced energy depositions, and jet
energies are corrected to the particle level using jet en-
ergy calibration and resolution factors determined from
photon+jet events. Corrections depend on the pT and η
of the jet and are typically 30%. Jet energy resolution
varies from 20% to 10% for pT between 40 and 150 GeV.

The primary vertex has to be within ±35 cm in the
z direction, and at least two “taggable” jets passing the
above requirements must be present in the event to be
included in our final sample. A jet is taggable if it con-
tains within its cone at least two tracks satisfying strict
quality criteria, one with pT > 1 GeV, and another with
pT > 0.5 GeV. The average fraction of taggable jets is
measured using W (→ µν)+jets data, and is (86±1)% per
jet. This fraction, which is a function of η and pT of the
jet, and of the z coordinate of the primary vertex, is used
to correct the simulated jets.

We then require: i) 6ET > 50 GeV, where 6ET is cal-
culated from the position and energy of the calorimeter
cells, ii) the azimuthal angle between the two highest
pT (leading) jets to be less than 165◦, and iii) no iso-
lated electrons or muons, in order to suppress multijet
background and W (→ eν, µν)+jet, and Z(→ ee, µµ)+jet
events. For the rejection of tt̄ background, we require
the scalar sum HT of the pT of the jets to be less than
240 GeV. To further reduce instrumental background in-
duced by mismeasurement of jet energy, which produces
abnormal 6ET , we define min∆ϕ(6~ET , jets) as the min-
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FIG. 1: Asymmetry distribution A( 6ET , 6HT ) in the signal
region, prior to the imposition of the requirement on A( 6ET ,
6HT ). The data is described by the sum of the physics back-
ground, modeled by a triple Gaussian, and the instrumental
background modeled by a polynomial function.

imum difference in ϕ between the direction of 6~ET and
any of the jets, 6HT≡ |∑njet

i=1
~pT | as the magnitude of

the vector sum of the ~pT of the jets, ~P trk
T ≡ −∑ntrk

i=1
~pT

as opposite vector sum of the ~pT of all tracks, ∆ϕ(6~ET ,
~P trk

T ) as the difference in ϕ between the direction of 6~ET

and ~P trk
T , and A(6ET , 6HT )≡(6ET− 6HT )/(6ET + 6HT ) as the

asymmetry between 6ET and 6HT . The instrumental back-
ground is significantly reduced by requiring: 6ET (in GeV)

> 80−40×min∆ϕ(6~ET , jet), |~P trk
T | > 20 GeV, ∆ϕ(6~ET ,

~P trk
T ) < π

2
and −0.1 < A(6ET , 6HT ) < 0.2. All these re-

quirements define the signal region.

W (→ µν)+jets data are used to confirm that the
above variables are well modeled. The instrumental back-
ground is then estimated from the data using the signal
and a “sideband” region, which is defined by requiring
all above selections, except for the requirement ∆ϕ(6~ET ,
~P trk

T ) > π
2
. The distribution in the simulated instrumen-

tal background generated by pythia gives a qualitative
description of this background. This indicates that we
are correctly identifying the background source, and we
therefore model it using sideband data to avoid uncer-
tainty from the difficult simulation of instrumental back-
ground. The physics backgrounds passing the final se-
lection tend to be distributed around ∆ϕ(6~ET , ~P trk

T ) ∼ 0,
while the instrumental background is distributed simi-
larly in the sideband and in the signal region due to mis-
measurement of jet energy or of charged tracks.

Figure 1 shows the A(6ET , 6HT ) distribution in the sig-
nal region. The amount of physics background in the
signal region is estimated using the simulation, and pa-
rameterized by a triple Gaussian (TG) function, shown
as a dashed line in Fig. 1. The contribution not described
by this parameterization is considered to be the instru-
mental background, and is modeled with a polynomial
function tested with a fit to the data in the sideband
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FIG. 2: 6ET distribution after selection except for b-tagging.

region. The physics background contributes about 15%
of the events in the sideband region and is included in
the model of instrumental background. The sum of the
absolutely normalized TG parameterization and of the
polynomial function is then fitted to the data in the sig-
nal region, as shown in Fig. 1. (Before b-tagging, the
Higgs signal is negligible.) The instrumental background
in the signal region amounts to 696±91 events, while the
physics background amounts to 2520±330 events. Since
our search requires good modeling of 6ET , we show in
Fig. 2 the 6ET distribution after all requirements, except-
ing b-tagging. The data are well described by the sum of
the simulation of Z/W + jj/bb̄ and the estimated con-
tribution from instrumental background. Top pair and
single top pair production represent negligible contribu-
tions before requiring b-tagging.

To select b jets, we apply a b-tagging algorithm that
uses a jet lifetime probability (JLIP) computed from the
tracks associated with the jet. A small probability cor-
responds to jets having tracks with a large impact pa-
rameter that characterize b-hadron decay. We use two
samples for our search: one that requires the two leading
jets to pass the b-tagging condition (double b-tagged sam-
ple, or DT sample); the other requires exactly one jet to
pass the b-tagging condition, and does not accept events
from the DT sample (exclusive single b-tagged sample,
or ST sample). The requirements on the lifetime proba-
bility are defined by optimizing the sensitivity to Higgs
signal. In the DT sample, we require JLIP < 1% for the
leading jet and < 4 % for the second-leading jet. In the
ST sample we require a more stringent JLIP < 0.1 %.
The average b-tagging efficiency is ≈ 50% (40%, 30%)
for JLIP < 4%(1%, 0.1%). The relative uncertainty on
the b-tagging efficiency is 7% per jet. The mis-tag rate
is defined as the fraction of light-quark jets tagged as b
jets, and its average value is approximately the value of
the JLIP requirement. For the instrumental background,
we estimate the mis-tag rate from data in the sideband
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TABLE I: Number of expected signal (for mH = 115 GeV),
background, and observed events (obs.) before b-tagging, af-
ter inclusive (IST), and exclusive (ST) single b-tagging, and
after double b-tagging (DT). Before b-tagging, the expected
background is by construction equal to the observed events
(see text on the background determination). The numbers
of events after the ±1.5 standard deviation (s.d.) mass win-
dow requirement are given in parenthesis. The errors on these
numbers are in average 18% (19%) for the ST (DT) sample.

6ET + 6ET + 6ET + 6ET +
2, 3 jets 2, 3 jets 2, 3 jets 2, 3 jets

IST ST DT
ZH 0.71 0.62 0.26 (0.20) 0.24 (0.21)
WH 0.54 0.47 0.20 (0.15) 0.18 (0.15)
Zjj 843 93.3 7.9 (2.6) 1.4 (0.5)
Wjj 1600 260 36.1 (13.6) 4.2 (1.5)
Zbb 13.1 11.3 4.7 (1.6) 4.1 (1.4)
Wbb 12.4 10.5 4.4 (1.4) 3.6 (1.1)

tt̄/tb/tqb 42.3 33.6 15.3 (5.6) 9.0 (3.0)
WZ/ZZ 7.3 3.4 1.1 (0.71) 0.9 (0.6)

Instrumental 696 143 25.0 (8.4) 3.9 (1.3)
Total expectation ≡ obs. 555 94.5 (34.0) 27.0 (9.4)
Observed events 3210 592 106 (33) 25 (11)

region, and extrapolate it into the signal region. Table I
lists the number of ZH and WH signal, background and
observed events for each b-tag requirement, and also for
the inclusive sample of events with at least one b-tagged
jet with JLIP < 4% (to verify that the data are also well
described by the simulation in another b-tagging config-
uration). After the ST requirement, 106 events remain,
while 94.5 ± 17.0 events are expected. In the DT sam-
ple, we observe 25 events, while 27.0 ± 5.1 are expected,
and in the inclusive sample these numbers are 592 and
555 ± 70 events, respectively.

We estimate the systematic uncertainty due to trig-
ger and jet reconstruction efficiency, jet energy calibra-
tion, jet resolution, b-tagging, instrumental-background
estimation, physics-background cross sections and par-
ton distribution functions, by varying each source of un-
certainty by ±1 s.d. and repeating the analysis. The
systematic uncertainties are estimated separately for the
DT and ST samples. In total, we find a 19% (14%) uncer-
tainty on signal acceptance and 19% (18%) uncertainty
on the total background for the DT (ST) analysis. The
dominant systematic uncertainties are due to b-tagging
and jet reconstruction and calibration. The uncertainty
on the integrated luminosity is 6.5%.

We then search for an excess of events as a function
of mH by counting events in the dijet mass distribu-
tion within a ±1.5 s.d. window around the reconstructed
Higgs-boson mass peak, e.g., ±25.2 GeV for mH=115
GeV. No excess over the SM background is found in the
data, as can be seen for the DT dijet mass distribution
in Fig. 3, in which the expected ZH signal for mH = 115
GeV is also shown. The acceptance for ZH (WH) events

Dijet invariant mass (GeV)
0 100 200 300 400

E
n

tr
ie

s 
/ 2

0 
G

eV

-110

1

10

Dijet invariant mass (GeV)
0 100 200 300 400

-110

1

10

 Run IIOD  )-1  (260 pb Data
Zjj/Zbb
Wjj/Wbb
Instrumental

/single toptt
WZ/ZZ

bbν ν→ZH
(m  =115 GeV)   H 

FIG. 3: Dijet invariant mass distribution in the DT sample.
The expectation originating from ZH production with mH =
115 GeV is also shown.

is 1.04% (0.43%) for mH = 115 GeV. We thus set 95%
C.L. upper limits on σ(pp̄ → ZH) × B(H → bb̄) and
σ(pp̄ → WH) × B(H → bb̄), using a modified frequen-
tist approach, the CLS method [14]. In this method, the
binned distributions are summed over the log-likelihood
ratio test statistic. Systematic uncertainties are incorpo-
rated into the signal and background expectations using
Gaussian sampling of individual uncertainties. For the
limits obtained when combining the likelihoods of the ST
and DT analyses, correlations between uncertainties are
handled by varying simultaneously all identical sources.
Limits are determined by scaling the signal expectations
until the probability for the background-only hypothe-
sis falls below 5% (95% C.L.). This translates into a
cross-section limit for σ(pp̄ → ZH) × B(H → bb̄) of
3.2 pb and for σ(pp̄ → WH) × B(H → bb̄) of 7.5 pb, as-
suming mH = 115 GeV. The limits for four Higgs mass
points (105, 115, 125, and 135 GeV) and for ST, DT,
and the combined ST+DT results are summarized in Ta-
bles II and III. We set 95% C.L. upper limits from 3.4 to
2.5 pb on σ(pp̄ → ZH) × B(H → bb̄) for mH = 105–135
GeV (Fig. 4). The CDF collaboration has published com-
bined limits (ST+DT) with Tevatron Run I data, i.e. at√

s = 1.8 TeV, of 7.8–7.4 pb for mH = 110–130 GeV [15].

In conclusion, we have performed a search for ZH and
WH associated production in the 6ET + b jets channel us-
ing 260 pb−1 of data. We have studied the dijet mass
spectrum of the two leading jets with double and exclu-
sive single b-tagged jets for Higgs boson masses between
105 and 135 GeV. In the absence of signal, we have set
upper limits on different Higgs production channels/final
states, and have combined them. The combined limits
are between 3.4 to 2.5 pb (8.3 to 6.3 pb) on the cross sec-
tion for ZH (WH) production multiplied by the branch-
ing fraction for H → bb̄. These are the first limits in the
ZH channel based on Tevatron Run II data.
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TABLE II: Expected/observed 95% C.L. limits on σ(pp̄ →
ZH) × B(H → bb̄) in pb, as a function of mH .

Higgs mass (GeV) 105 115 125 135
ST 7.7/8.2 6.8/6.8 6.0/7.3 5.4/7.5
DT 3.3/4.2 2.8/3.6 2.5/2.8 2.2/2.2

ST+DT 3.1/3.4 2.7/3.2 2.4/2.9 2.1/2.5

TABLE III: Expected/observed 95% C.L. limits on σ(pp̄ →

WH) × B(H → bb̄) in pb, as a function of mH .

Higgs mass (GeV) 105 115 125 135
ST 18.5/17.6 15.9/16.9 14.9/18.9 12.4/18.5
DT 8.0/9.6 6.6/8.1 6.3/7.1 5.3/5.3

ST+DT 7.6/8.3 6.3/7.5 6.0/7.4 5.0/6.3
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